Introducing Rel-16 of the 5G NR Physical Layer
5G New Radio (NR) is finally here. The first NR release was completed in June 2018. The conclusion of NR Rel-15 filled the gaps left by the earlier version published in December 2017, such as stand-alone connectivity and URLLC use cases. And now, while the industry is working hard on deploying the first commercial 5G NR networks, the work on the first evolution of NR has already started. NR Rel-16 is in its very early stages and it is expected to be complete by the end of 2019.
This webinar summarises the 3GPP physical layer workplan for Rel-16 and explores the current status of the main features to be introduced in Rel-16: non-orthogonal multiple access, unlicensed access, V2X, MIMO enhancements, UE power saving, UE positioning and URLLC enhancements.
https://connectlp.keysight.com/5g-insights-january
Fundamentals of 5G Mobile Networks
1 Drivers for 5G: The ‘Pervasive Connected World’ 1
1.1 Introduction 1
1.2 Historical Trend of Wireless Communications 2
1.3 Evolution of LTE Technology to Beyond 4G 4
1.4 5G Roadmap 5
1.5 10 Pillars of 5G 6
1.5.1 Evolution of Existing RATs 6
1.5.2 Hyperdense Small‐Cell Deployment 7
1.5.3 Self‐Organising Network 8
1.5.4 Machine Type Communication 8
1.5.5 Developing Millimetre‐Wave RATs 8
1.5.6 Redesigning Backhaul Links 9
1.5.7 Energy Efficiency 9
1.5.8 Allocation of New Spectrum for 5G 10
1.5.9 Spectrum Sharing 10
1.5.10 RAN Virtualisation 10
1.6 5G in Europe 11
1.6.1 Horizon 2020 Framework Programme 11
1.6.2 5G Infrastructure PPP 12
1.6.3 METIS Project 13
1.6.4 5G Innovation Centre 14
1.6.5 Visions of Companies 14
1.7 5G in North America 15
1.7.1 Academy Research 15
1.7.2 Company R&D 15
1.8 5G in Asia 16
1.8.1 5G in China 16
1.8.2 5G in South Korea 19
1.8.3 5G in Japan 21
1.9 5G Architecture 23
1.10 Conclusion 24
Acknowledgements 25
References 25
2 The 5G Internet 29
2.1 Introduction 29
2.2 Internet of Things and Context‐Awareness 32
2.2.1 Internet of Things 33
2.2.2 Context‐Awareness 34
2.3 Networking Reconfiguration and Virtualisation Support 35
2.3.1 Software Defined Networking 36
2.3.2 Network Function Virtualisation 38
2.4 Mobility 40
2.4.1 An Evolutionary Approach from the Current Internet 40
2.4.2 A Clean‐Slate Approach 45
2.5 Quality of Service Control 47
2.5.1 Network Resource Provisioning 47
2.5.2 Aggregate Resource Provisioning 49
2.6 Emerging Approach for Resource Over‐Provisioning 50
2.6.1 Control Information Repository 53
2.6.2 Service Admission Control Policies 53
2.6.3 Network Resource Provisioning 53
2.6.4 Control Enforcement Functions 54
2.6.5 Network Configurations 54
2.6.6 Network Operations 55
2.7 Summary 57
Acknowledgements 57
References 58
3 Small Cells for 5G Mobile Networks 63
3.1 Introduction 63
3.2 What are Small Cells? 64
3.2.1 WiFi and Femtocells as Candidate Small‐Cell Technologies 66
3.2.2 WiFi and Femto Performance – Indoors vs Outdoors 70
3.3 Capacity Limits and Achievable Gains with Densification 73
3.3.1 Gains with Multi‐Antenna Techniques 73
3.3.2 Gains with Small Cells 76
3.4 Mobile Data Demand 81
3.4.1 Approach and Methodology 81
3.5 Demand vs Capacity 81
3.6 Small‐Cell Challenges 93
3.7 Conclusions and Future Directions 97
References 99
4 Cooperation for Next Generation Wireless Networks 105
4.1 Introduction 105
4.2 Cooperative Diversity and Relaying Strategies 107
4.2.1 Cooperation and Network Coding 107
4.2.2 Cooperative ARQ MAC Protocols 108
4.3 PHY Layer Impact on MAC Protocol Analysis 110
4.3.1 Impact of Fast Fading and Shadowing on Packet
Reception for QoS Guarantee 111
4.3.2 Impact of Shadowing Spatial Correlation 112
4.4 Case Study: NCCARQ 113
4.4.1 NCCARQ Overview 113
4.4.2 PHY Layer Impact 114
4.5 Performance Evaluation 116
4.5.1 Simulation Scenario 116
4.5.2 Simulation Results 117
4.6 Conclusion 122
Acknowledgements 122
References 122
5 Mobile Clouds: Technology and Services for Future Communication
Platforms 125
5.1 Introduction 125
5.2 The Mobile Cloud 127
5.2.1 User Resources 129
5.2.2 Software Resources 130
5.2.3 Hardware Resources 131
5.2.4 Networking Resources 132
5.3 Mobile Cloud Enablers 133
5.3.1 The Mobile User Domain 133
5.3.2 Wireless Technologies 135
5.3.3 Software and Middleware 139
5.4 Network Coding 140
5.5 Summary 145
References 145
6 Cognitive Radio for 5G Wireless Networks 149
6.1 Introduction 149
6.2 Overview of Cognitive Radio Technology in 5G Wireless 150
6.3 Spectrum Optimisation using Cognitive Radio 152
6.4 Relevant Spectrum Optimisation Literature in 5G 152
6.4.1 Dynamic Spectrum Access 152
6.4.2 Spectrum Regulatory Policy 153
6.4.3 Marketing Policy and Model 154
6.5 Cognitive Radio and Carrier Aggregation 154
6.6 Energy‐Efficient Cognitive Radio Technology 155
6.7 Key Requirements and Challenges for 5G Cognitive Terminals 156
6.7.1 5G Devices as Cognitive Radio Terminals 157
6.7.2 5G Cognitive Terminal Challenges 159
6.8 Summary 162
References 162
7 The Wireless Spectrum Crunch: White Spaces for 5G? 165
7.1 Introduction 165
7.2 Background 168
7.2.1 Early Spectrum Management 168
7.2.2 History of TV White Spaces 169
7.2.3 History of Radar White Spaces 171
7.3 TV White Space Technology 171
7.3.1 Standards 172
7.3.2 Approaches to White Space 173
7.4 White Space Spectrum Opportunities and Challenges 175
7.5 TV White Space Applications 178
7.5.1 Fixed Wireless Networking 180
7.5.2 Public Safety Applications 181
7.5.3 Mobile Broadband 182
7.6 International Efforts 185
7.7 Role of WS in 5G 186
7.8 Conclusion 186
References 187
8 Towards a Unified 5G Broadcast‐Broadband Architecture 191
8.1 Introduction 191
8.2 Background 192
8.3 Challenges to Be Addressed 195
8.3.1 The Spectrum Dimension 195
8.3.2 The Risk of Fragmentation of the Terminal Market 196
8.3.3 The Change in TV Consumer Patterns and the Need for a Flexible Approach 197
8.3.4 Business‐Related Hurdles 198
8.3.5 Societal Requirement: TV Broadcasting as a Public Service Media in Europe 198
8.4 Candidate Network Architectures for a BC‐BB Convergent Solution 199
8.4.1 Solution 1: Cellular Broadcasting in the TV Spectrum 200
8.4.2 Solution 2: Hybrid Network Approach – Using DVB‐T2 FEFs for LTE Transmission 201
8.4.3 Solution 3: Next Generation Common Broadcasting System 201
8.5 The BC‐BB Study: What Needs to Be Done 204
8.5.1 TV and Video Future Consumption Models in Europe 204
8.5.2 BC‐BB Architecture Options 204
8.5.3 Large‐Scale Simulation and Assessment of BC‐BB Convergent Options 204
8.5.4 Feasibility Study 205
8.6 Conclusion 205
References 206
9 Security for 5G Communications 207
9.1 Introduction 207
9.2 Overview of a Potential 5G Communications
System Architecture 208
9.3 Security Issues and Challenges in 5G Communications
Systems 209
9.3.1 User Equipment 210
9.3.2 Access Networks 212
9.3.3 Mobile Operator’s Core Network 216
9.3.4 External IP Networks 217
9.4 Summary 218
References 219
10 SON Evolution for 5G Mobile Networks 221
10.1 Introduction 221
10.2 SON in UMTS and LTE 222
10.3 The Need for SON in 5G 231
10.4 Evolution towards Small‐Cell Dominant HetNets 236
10.4.1 Towards a New SON Architecture for 5G 237
10.5 Conclusion 239
References 240
11 Green Flexible RF for 5G 241
11.1 Introduction 241
11.2 Radio System Design 242
11.2.1 Antenna Design for 5G 242
11.2.2 Passive Front‐End Design Using SIW for 5G Application 254
11.2.3 RF Power Amplifiers 257
11.3 Nonlinear Crosstalk in MIMO Systems 264
11.4 Summary 269
Acknowledgements 269
References 270